

Faculty of Engineering & Technology

Robot Mechanics

Information :

Course Code : MKT 471	Level	:	Undergraduate	Course Hours :	3.00- Hours

Department : Specialization of Mechatronics Engineering

Instructor Information :

Title	Name	Office hours
Lecturer	MOHAMED ABDELBAR SHAMSELDIN ALY	9
Lecturer	MOHAMED ABDELBAR SHAMSELDIN ALY	9
Teaching Assistant	Fady Ayman Mohamed Naguib Mahmoud Noah	2
Teaching Assistant	Fady Ayman Mohamed Naguib Mahmoud Noah	2

Area Of Study :

APrepare students to analyze rigid motion with coordinate transform. ADevelop the students' ability to derive robot manipulator kinematics and use DH convention. A rain students to solve simple inverse kinematics problems. A rain students to solve robot motion planning problems.

Description:

Robotics overview and applications; Robot sensors and actuators, Robotic technology and systems; Kinematic Modeling: Spatial Representations and Transformations; DH and Homogenous transformations; Forward and inverse Kinematics; Jacobian for velocities and static analysis; Problem solving using up to date standard S/W robotics tools (Matlab); implementing the right industrial robotics system for a plant.

Course outcomes :

a.Knowledge and Understanding: :

1 - Define robot terminology and taxonomy.

Explain the Denavit-Hartenberg, DH convention for axis transformation and building table.

b.Intellectual Skills: :

2 -

- 1 Analyze the forward kinematics of robot chain.
 - 2 Create homogenous transformation matrices.
 - 3 Derive inverse kinematics of serial robot chains.

c.Professional and Practical Skills: :

- 1 Use the suitable software for analysis of robot kinematics.
- 2 Select right robot type for a motion application need.

d.General and Transferable Skills: :

1 - Manage tasks, time, and resources.

2 - Search for information and engage in life-long self-learning discipline through self-learning assignments.
3 - Collaborate effectively within multidisciplinary team.

Course Topic And Contents :				
Торіс	No. of hours	Lecture	Tutorial / Practical	
Introduction	4	4	0	
Rigid motion	6	4	2	
Forwards kinematics	10	4	6	
Inverse kinematics	10	4	6	
Jacobian matrix and singularity	16	8	8	
Project discussion	8	4	4	
Project presentation	6	2	4	

Teaching And Learning Methodologies :	
Interactive Lecturing	
Problem solving	
Discussion	
Project	
Research	

Course Assessment :			
Methods of assessment	Relative weight %	Week No	Assess What
Assignment Assessments	5.00		
Final Exam	40.00		
Mid- Exam 1I	15.00		
Mid- Exam I	15.00		
Participation	5.00		
Project	10.00		
Quizzes	10.00		

Recommended books :

[#]Bruno Siciliano, Robotics, Modeling, Planning and Control.Springer 2009.

*A*Craig, John J, R. Introduction to Robotics: Mechanics and Control, Pearson Education International, 2005, 3rd Edition.

[#]Saeed B. Niku, Introduction to Robotics, Prentice Hall, 2001.

^{*}ÁK.S. Fu, R.C. Gonzalez, and C.S.G. Lee, Robotics: Control, Sensing, Vision and Intelligence, McGraw-Hill, 1987
^{*}ÁH.Asada and J. Slotine, Robot Analysis and Control, John Wiley & Sons New York, 1986, 3rd Edition.
^{*}ÁFu, K.S., Gonzalez, R.C., and Lee, C.S.G. Robotics: Control, Sensing, Vision, and Intelligence, McGraw Hill, 1986.
^{*}ÁMegahed, S.M., Robotics: Principles of Robot Modelling and Simulation, John Wiley, 1993.

