

Faculty of Engineering & Technology

Power System Analysis 2

Information:

Course Code: EPR 512 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Electrical Power Engineering

Instructor Information:	tructor Information:				
Title	Name	Office hours			
Professor	Said Fouad Mohamed Mekhemar	2			
Assistant Lecturer	Mohamed Abdallah Mahmoud Shaheen	6			

Area Of Study:

ADevelop the students' knowledge about power system stability and dynamics.

A rain students to analyze power system voltage stability problems.

A rain students to analyze power system angle stability problems for both small and large disturbances.

Description:

Transients in electrical systems: Types of transients, Equivalent circuits of power system elements, Multi-machine linear systems, Maximum power and loading limit, Modeling of basic elements of electrical systems: Vector diagram representation, Simplified systems, Excitation and speed control systems, Block diagram representation, Simplified criteria of transient stability: Concept of transient stability, Equal area criterion, Numerical solutions of rotor electromechanical equation, Dynamic stability: Analysis of uncontrolled systems, Controlled systems, Power system stabilizers, Voltage stability of loads and power systems: Criteria of voltage stability, Voltage collapse in electrical power .

Course ou	tcomes :			
a.Knowledge and Understanding: :				
1 -	Define different types of power system stability.			
2 -	State the swing equation in electrical units and per-unit forms.			
3 -	Demonstrate understanding of the equal area criterion.			
4 -	Model the power system components for small signal study.			
5 -	Define Synchronizing power and Damping coefficients			
6 -	Derive the maximum power equation under a given power factor.			
7 -	Derive the equations of PV and VQ curves			
b.Intellect	ual Skills: :			
1 -	Develop the power angle equation before, during and after fault.			
2 -	Evaluate the system transient stability using equal area criterion.			
3 -	Analyze the small signal stability of a single-machine infinite bus system.			
4 -	Analyze the voltage stability using PV curve.			

- 5 Use VQ curve to select suitable size of shunt capacitors for voltage stability requirements.
- 6 Apply suitable numerical methods to solve the swing equation.

c.Professional and Practical Skills: :

1 - use of PowerWorld Simulator to analyze voltage stability problem.

d.General and Transferable Skills::

1 - Demonstrate efficient IT capabilities.

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Power System Model for Stability: swing equation, Power-angle characteristics, Vector diagrams	5	3	2
Small Signal Stability of unregulated systems	5	3	2
Small Signal Stability of regulated systems	5	3	2
Transient Stability, Equal Area Criterion	5	3	2
Examples on Equal Area Criterion and Exam I	10	6	4
Introduction to Power System Stability	5	3	2
Numerical solution of swing equation	5	3	2
Transient Stability Enhancement Methods	5	3	2
Maximum Deliverable power for 2-node system and Exam II	10	6	4
PV curve and voltage stability	10	6	4
VQ curve and shunt compensation	10	6	4

Teaching And Learning Methodologies:

Interactive Lecturing.

Problem Solving.

Experiential Learning.

Course Assessment :						
Methods of assessment	Relative weight %	Week No	Assess What			
Assignment	5.00					
Final exam	40.00					
Lab Project.	10.00					
Mid- Exam 1I	15.00					
Mid- Exam I	15.00					
Quizzes	15.00					

Course Notes:

No course notes are required

Recommended books:

- 1- Hadi Saadat, ‰ower System Analysis-ÆPSA Publishing, Third Edition, 2010. 2- Thierry Van Cutsem, Costas Vournas, ‰oltage Stability of Electric Power System", Springer, 1998.