

Basic Information :

Name : AMR MOHAMED METWALLY ISMAIEL Title : Lecturer

*Name: Amr Muhammad Metwally Ismaiel

*Current Occupation: -Assistant Professor in the Faculty of Engineering; FUE

Education:			
Certificate	Major	University	Year
PhD	Mechanical Engineering	Kyushu University - Japan	2019
Masters	Mechanical Design Engineering	Cairo University- Faculty of Engineering	2016
Bachelor	Aeronautical and Aerospace Engineering	Cairo - Egypt	2012

Teaching Experience:					
Name Of Organization	Position	From Date	To Date		
FUE	Lecturer	03/02/2013	Current		

	Researches /	Publications	:
--	---------------------	--------------	---

A Multivariate Machine Learning Approach for the Prediction of Wind Turbine Blade Structural Dynamics
Parametric Analysis Towards the Design of Micro-Scale Wind Turbines: A Machine Learning Approach
Investigation into the Yaw Control of a Twin-Rotor 10 MW Wind Turbine
Deep Learning Approaches for Power Prediction in Wind. Solar Tower Systems
Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review
WindPACT 1.5 MW Wind Turbine Rotor Dynamic Loads Under the Effect of Atmospheric Turbulence
Solar Chimney Power Plants: A Mini Review
Low-Cost, Low-Weight Test Rig Design for a Laboratory-Scale Twin Rotor Wind Turbine
Wind Turbine Blade Dynamics Simulation under the Effect of Atmospheric Turbulence
Air Distribution System for Infection Reduction in Commercial Airplane Premium Economy and Business Class Passenger Seats
Aerodynamic Performance of a 100 W Single-Rotor Wind Turbine in Comparison with Multi-Rotor Wind Turbines of the Same Capacity
Modelling and Simulation of an Asynchronous Generator for a 5 MW Wind Turbine
Aerodynamic Performance and Structural Design of 5 MW Multi Rotor System (MRS) Wind Turbines
An Improved Air Distribution System for Infection Reduction in Economy-Class Passenger Airplanes
Influence of Atmospheric Turbulence on Wind Turbinec Rotor Teeter Dynamics
Rotor Dynamics of AWT-27 Two-Bladed Wind Turbine Under Turbulence Effect
Structural Dynamics of AWT-27 Wind Turbine Blade
Twin-Rotor Wind Turbine Power Performance Compared to a Single-Rotor of the Same Tip-to-Tip Spacing

http://www.fue.edu.eg

Aeroelastic Analysis for Side-Booms of a Coplanar Twin-Rotor Wind Turbine
Aeroelastic Analysis of a Coplanar Twin-Rotor Wind Turbine
Aeroelastic Analysis of a Coplanar Twin-Rotor Wind Turbine
WIND TURBULENCE EFFECT INVESTIGATION ON FATIGUE OF HORIZONTAL AXIS WIND TURBINE (HAWT)
FLUID-STRUCTURE INTERACTION COMPUTATIONS FOR WIND TURBINE BLADE
System identification, fuzzy control and simulation of a kite power system with fixed tether length
Study of turbulence intensity effect on the fatigue lifetime of wind turbines
Study of turbulence intensity effect on the fatigue lifetime of wind turbines - Conference Version
Fatigue Analysis of an Optimized HAWT Composite Blade
VERIFICATION OF EQUIVALENT ISOTROPIC MODEL FOR A COMPOSITE HAWT BLADE
Fatigue Analysis of an Optimized HAWT Composite Blade

Awards:		
Award	Donor	Date
Best Poster Presentation at CSS-EEST 20	Busan; South Korea	01/01/2018
Best Oral Presentation at IEICES 3	Fukuoka; Japan	01/01/2017
Best Oral Presentation at CSS-EEST18	Shanghai; China	01/01/2016
Best Graduation Project in the syndicate of Engineering	Syndicate of Engineering; Egypt	01/01/2012
Best Mechanical Engineering Project in EED	IEEE; Egypt	01/01/2012