Future University In Egypt (FUE)

Staff Research

Paper Title :
Author : Amira Mohsen Abdelkader
CoAuthors : Hussein O Ammar, Mina Ibrahim Tadros, Nahla M Salama
Source : International Journal of Nanomedicine
Date of Publication : 08/2020
Abstract : Aim: The aim of the current work was to develop vardenafil hydrochloride (VRD)-loaded ethosome-derived invasomes as a possible transdermal system which could be used for patients suffering from pulmonary arterial hypertension. Methods: VRD-loaded ethosomes were developed at three concentrations of phosphatidylcholine (5, 10 and 15 mg/mL) and three percentages of ethanol (20%, 30% and 40%, v/v). The best achieved VRD-loaded ethosomes (ETH9) were optimized to invasomes via incorporation of terpenes (limonene, cineole and a 1:1 mixture) at three concentrations (0.5%, 1% and 2%, v/v). All systems were evaluated for vesicle size, zeta potential, drug entrapment efficiency (EE%), cumulative drug permeated percentages after 0.5hrs (Q0.5h) and 12hrs (Q12h) and steady-state flux (Jss). The optimized system (ETH9-INV8) was further characterized for morphology, histopathology and confocal laser scanning microscopy (CLSM). Physiologically based pharmacokinetic (PBPK) modeling was employed to estimate VRD pharmacokinetic parameters from the optimized transdermal system and an oral aqueous drug dispersion, in adults and geriatrics. Results: The optimized invasomal system (ETH9-INV8) was characterized with spherical vesicles (159.9 nm) possessing negative zeta potential (−20.3 mV), promising EE% (81.3%), low Q0.5h (25.4%), high Q12h (85.3%) and the largest steady-state flux (6.4 µg.cm−2 h−1 ). Following a leave-on period of 12hrs in rats, it showed minor histopathologic changes. CLSM studies proved its ability to deeply permeate rat skin. Lower Cmax values, delayed Tmax estimates and greater AUC0-24h folds in adults and geriatrics (≈ 2.18 and 1.69, respectively) were estimated following the transdermal application of ETH9-INV8 system. Conclusion: ETH9-INV8 is a promising transdermal system for VRD
Download PDF
BACK
  • Research Centers

    With the growing emphasis on collaborative and interdisciplinary science, Research Centers have become indispensable to highly ranked universities. They gain their importance from the outstanding role they play in enhancing the academic activities, in general, and post graduate reputation and scientific ranking in particular. Realizing this fact, Future University in Egypt (FUE) have decided and allocated sufficient funds and infrastructure to establish FUE Research Center (FUERC) having the following vision, mission, and goals

    read more
  • Continuing Education

    Future University in Egypt’s Department of Continuing Education (DCE) is dedicated to bridging the gap between the capabilities

    read more
  • FUE Pharmaceutical Factory

    The Future Factory for Industrial Training’s (FFIT) aim is to be recognized for its unique training facility as well as its advanced techniques. As a result, we established a training pharmaceutical plant, that provides an actual simulation of an industrial atmosphere with the processes and procedures that take place in the manufacturing world.

    read more
  • FUE Dental Hospital

    FUE has maintained a highly reputable dental faculty over the years, therefore the development of the Dental Hospital is a step towards the FUE goal of providing the best dental academic programs

    read more
Community service unit at Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, launches Q&A about Covid-19.

Community service unit at Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, launches Q&A about Covid-19.

COVID-19 Awareness
FUEscientificJournals

VISIT FUE

Take a step to<br>Future<br>For a better future

Address

End of 90th St., Fifth Settlement,
New Cairo, Egypt

Hotline

Inside Egypt: 16383 (16FUE)

Outside Egypt: +20216383, +2026186100

Copyright © 2023 [Future University in Egypt]. All rights reserved.