Future University In Egypt (FUE)

Staff Research

Paper Title :
Author : Mohamed Fathy Abdel Rahman Badran
Source : COMSOL Conference, Rotterdam
Date of Publication : 10/2017
Abstract : Non-mechanical micropumps, which does not required moving parts, have prominent role in several biomedical microsystems such as drug delivery, and lab on a chip. Electroosmotic micropump is a non-mechanical micropump that is used to move electrically neutral fluids through very small cross section channels. Given that, the channel walls must have attached immobile charges. As shown in Figure 1, a glass wall that is coated with ionizable materials will produce these immobile charges. Since the concentration gradient of the electric charges decreases toward the center of channel, a dual layer of fluid is formed with varying concentration of charges as shown in Figure 1. By applying an electric field, the cations will move from the cathode towards the anode. The momentum of these moving charges will drag the fluid to move also from the cathode to the anode as shown in Figure 1. In this paper, modeling and simulation of electroosmotic micropump using nonNewtonian fluid like blood will be conducted to investigate its' performance. The simulation will be done using COMSOL Multiphysics® software. A 2D model is used for one pumping stage to examine the pumping pressure and flow rate of blood using electroosmotic micropump. The results of the one stage can be extended to multi-stage micropump. This simulation will involve several physics such as laminar flow, transport of diluted species and electric currents. A two-step study, stationary and time dependent, will be performed. The expected results in terms of pressure and fluid flow of the micropump for a several electric fields are important to assess the suitability of using electro-osmotic micropump for biomedical applications, which involve blood such as lab on chips. Figures used in the abstract Figure 1: Schematic of the system. LESS
Download PDF
BACK
  • Research Centers

    With the growing emphasis on collaborative and interdisciplinary science, Research Centers have become indispensable to highly ranked universities. They gain their importance from the outstanding role they play in enhancing the academic activities, in general, and post graduate reputation and scientific ranking in particular. Realizing this fact, Future University in Egypt (FUE) have decided and allocated sufficient funds and infrastructure to establish FUE Research Center (FUERC) having the following vision, mission, and goals

    read more
  • Continuing Education

    Future University in Egypt’s Department of Continuing Education (DCE) is dedicated to bridging the gap between the capabilities

    read more
  • FUE Pharmaceutical Factory

    The Future Factory for Industrial Training’s (FFIT) aim is to be recognized for its unique training facility as well as its advanced techniques. As a result, we established a training pharmaceutical plant, that provides an actual simulation of an industrial atmosphere with the processes and procedures that take place in the manufacturing world.

    read more
  • FUE Dental Hospital

    FUE has maintained a highly reputable dental faculty over the years, therefore the development of the Dental Hospital is a step towards the FUE goal of providing the best dental academic programs

    read more
Community service unit at Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, launches Q&A about Covid-19.

Community service unit at Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, launches Q&A about Covid-19.

COVID-19 Awareness
FUEscientificJournals

VISIT FUE

Take a step to<br>Future<br>For a better future

Address

End of 90th St., Fifth Settlement,
New Cairo, Egypt

Hotline

Inside Egypt: 16383 (16FUE)

Outside Egypt: +20216383, +2026186100

Copyright © 2023 [Future University in Egypt]. All rights reserved.